Review: Complex numbers NO CALCULATORS

[1] Find the modulus (absolute value) of each number.

[a] 3-4i [b] -10i

[2] Find the argument (angle) of each number.

[a] -i [b] -1-i

[3] Rewrite each number in modulus-argument form $(r \operatorname{cis} \theta)$

[a] 4 [b] -4 [c] 5*i* [d] -4*i* [e] -3+3i [f] $1-\sqrt{3}i$

[4] Rewrite each number in Cartesian form (a+bi)

[a] cis 45° [b] cis $\frac{5\pi}{6}$ [c] 4cis 120° [d] 2cis $\frac{3\pi}{4}$

[5] Evaluate and give your answer in Cartesi an form: $\left(\operatorname{cis} \frac{2\pi}{3}\right)^3$

[6] Evaluate and give your answer in Cartesian form: $\left(-\frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}}i\right)^4$

[7] Evaluate and give your answer in Cartesian form: $\left(\frac{1}{2} + \frac{\sqrt{3}}{2}i\right)^6$

[8] One of the cube roots of complex number z is $4 \operatorname{cis} \frac{\pi}{3}$. Find the other two cub roots of z.

[9] Evaluate and give your answer in polar form: $\left(3 \operatorname{cis} \frac{\pi}{3}\right) \left(4 \operatorname{cis} \frac{5\pi}{4}\right)$

[10] Evaluate and give your answer in polar form: $\frac{9 \operatorname{cis} \frac{3\pi}{4}}{3 \operatorname{cis} \frac{\pi}{2}}$

[11] Find the three cube roots of $-\frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}}i$. Give your answers in Cartesian form.