Set up and evaluate a definite integral to find each area.

[1] The area between $y = x^2 \sin x$ and the x-axis shown in the diagram.

[2] The area bounded by $y = \sqrt{x}$, $y = \frac{1}{x}$, and x = 3

[3] The area bounded by $y = \frac{1}{\sqrt{x^2 + 4}}$, $y = \frac{x}{\sqrt{x^2 + 4}}$, and x = 0

[4] The area between $y = x^{\frac{2}{3}}$, and $y = x^{\frac{3}{2}}$

[5] The area bounded by y = 2 - x, $y = \frac{1}{x^2 + 3x + 2}$, x = 1, and the y-axis.

[6] The area bounded by $y = \frac{x}{\left(x^2 + 1\right)^2}$, y = 0, and x = 1 in the first quadrant.

[7] The area bounded by $x = y^2 - 1$ and x = y + 1

[8] The area bounded by one arch of the curve $x = y \sin y$ and the y-axis in the first quadrant.

[9] The area bounded by the curve $x = \frac{y}{y+2}$ and the line y = 2x+1

[10] The area bounded by the curves $x = 4 - y^2$ and $x = y^2 - 2y$